347
CRISPR/Cas and Its Potentiality as an Effective Tool
Wu, W. Y., Lebbink, J. H. G., Kanaar, R., Geijsen, N., & Van, De. O. J., (2018). Genome
editing by natural and engineered CRISPR-associated nucleases. Nat. Chem. Biol., 14,
642–651.
Xu, J., Soni, V., Chopra, M., & Chan, O., (2020). Genetic modification of the HSP90 gene
using CRISPR-Cas9 to enhance thermotolerance in T. Suecica. URNCST Journal, 4(4).
https://doi.org/10.26685/urncst.178.
Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., et al., (2006).
Sub1Ais an ethylene response-factor-like gene that confers submergence tolerance to rice.
Nature, 442(7103), 705–708. doi: 10.1038/ nature04920.
Ye, Y., Li, P., Xu, T., Zeng, L., Cheng, D., Yang, M., Luo, J., & Lian, X., (2017). Ospt4
contributes to arsenate uptake and transport in rice. Front in Plant Science, 8, 2197. doi:
10.3389/fpls.2017.02197.
Yin, X., Anand, A., Quick, P., & Bandyopadhyay, A., (2019). Editing a stomatal developmental
gene in rice with CRISPR/Cpf1. In: Qi, Y., (ed.), Plant Genome Editing with CRISPR
Systems: Methods in Molecular Biology (Vol. 1917). New York, NY: Humana Press.
Zafar, K., Khan, M. Z., Amin, I., Mukhtar, Z., Yasmin, S., Arif, M., Ejaz, K., & Mansoor, S.,
(2020). Precise CRISPR-Cas9 mediated genome editing in super basmati rice for resistance
against bacterial blight by targeting the major susceptibility gene. Front. Plant Sci., 11, 575.
doi: 10.3389/fpls.2020.00575.
Zaidi, S., Tashkandi, M., Mansoor, S., & Mahfouz, M., (2016). Engineering plant immunity:
Using CRISPR/Cas9 to generate virus resistance. Front. Plant Sci., 7, 1673.
Zeng, Y., Wen, J., Zhao, W., Wang, Q., & Huang, W., (2020). Rational improvement of
rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB30
with the CRISPR–Cas9 system. Frontiers in Plant Science, 10. https://doi.org/10.3389/
fpls.2019.01663.
Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S.,
Essletzbichler, P., Volz, S. E., et al., (2015). Cpf1 is a single RNA-guided endonuclease of a
class 2 CRISPR-Cas system. Cell, 163, 759–771. https://doi. org/10.1016/j.cell.2015.09.038.
Zhang, A., Liu, Y., Wang, F., Li, T., Chen, Z., Kong, D., Bi, J., et al., (2019). Enhanced rice
salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol.
Breed., 39, 47.
Zhang, T., Zheng, Q., Yi, X., An, H., Zhao, Y., Ma, S., & Zhou, G., (2018). Establishing RNA
virus resistance in plants by harnessing CRISPR immune system. Plant Biotechnol. J., 16,
1415–1423.
Zhang, Y., Bai, Y., Wu, G., Zou, S., Chen, Y., Gao, C., & Tang, D., (2017). Simultaneous
modification of three homoeologs of TaEDR1 by genome editing enhances powdery
mildew resistance in wheat. Plant J., 91, 714.
Zhang, Y., Massel, K., Godwin, I. D., & Gao, C., (2018). Applications and potential of
genome editing in crop improvement. Genome Biol., 19, 210. https://doi.org/10.1186/s1305
9-018-1586-y.
Zhang, Z., Ge, X., Luo, X., Wang, P., Fan, Q., Hu, G., Xiao, J., et al., (2018). Simultaneous
editing of two copies of GH14-3-3D confers enhanced transgene-clean plant defense
against Verticillium dahliae in allotetraploid upland cotton. Front. Plant Sci., 9, 842.
Zhong, Z., Zhang, Y., You, Q., Tang, X., Ren, Q., Liu, S., et al., (2018). Plant genome editing
using FnCpf1 and LbCpf1 nucleases at redefined and altered PAM sites. Mol. Plant., 11,
999–1002. doi: 10.1016/j.molp.2018.03.008.